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1. Generalities

Dynamical systems are models for phenomena evolving in time in a
deterministic way.

Ingredients.

1 A state space Ω. A state x 2 Ω is determined by d variables or
�degrees of freedom�.

2 Time, which may be

discrete: n = 0, 1, ... (future), n = �1,�2, ... (past)
continuous: t ! ∞ (future), t ! �∞ (past)

3 Evolution equation:

discrete time: di¤erence eqn. (xn+1 = f (xn)).
continuous time: di¤erential eqn. (dx/dt = f (x(t))).

We will mostly consider discrete-time dynamical systems.
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1. Generalities

Notation for discrete-time DS: (Ω, f )

Historically f was (and very often still is) supposed to be invertible
because Newtonian mechanics is time reversible.

A dynamical system can be

linear, if the evolution equation is linear.

nonlinear, otherwise.

conservative, if the volume in state space is preserved in time

dissipative, if the volume in state space is contracted in time.
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1. Generalities

Examples of discrete-time systems

The number of individuals of a population every day, year, generation,
etc.

Monthly interest earned by a saving deposit

Average temperature in the last years, decades, centuries,...

Examples of continuous-time systems

A particle moving in a force �eld

Current or voltage in an electronic circuit

Concentration of a compound during a chemical reaction
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1. Generalities

Examples of state spaces.

1 Simple pendulum: Ω = circle
2 Double pendulum: Ω = circle � circle = 2D torus
3 Mass point on the plane with polar coordinates: Ω = R3� circle =
cylinder

4 Mass point in space with Cartesian coordinates: Ω = R6
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1. Generalities

Forward evolution equation of a discrete-time system:
Let f a map from Ω to Ω: f : Ω ! Ω.

Initial state (time n = 0): x0

Time n = 1: x1 = f (x0).
Time n = 2: x2 = f (x1) = f (f (x0)) � f 2(x0)

Time n = k: xk = f (xk�1) = f k(x0), where

f k(x) � f (f (.....f (x)....))| {z }
k times

is called the kth iterate of f .
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1. Generalities

The in�nite sequence

x0, x1, ..., xk, ... = x0, f (x0), ..., f k(x0), ... � (f n(x0))n�0,

is called the (forward) orbit of x0. The state x0 is the initial condition.

If f is an invertible map, one can also de�ne the backward orbit:

x0, x�1, ..., x�k, ... = x0, f�1(x0), ..., f�k(x0), ... � (f�n(x0))n�0.

The full orbit is

..., x�k, ..., x�1, x0, x1, ..., xk, ...(f n(x0))n2Z.

At the contrary that with random sequences, once x0 is known its
orbit is determined.
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1. Generalities

Example. Take Ω = [0, 1] and f (x) = 4x(1� x), the logistic map.

) (f n(0.6416))n�0 = 0.6416, 0.9198, 0.2951, 0.8320, 0.5590, 0.9861, . . .

Remark. For the logistic map

xn =
1
2

h
1� cos

�
2n cos�1(1� 2x0)

�i
,

but don�t use this formula for computations!
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2. Attractors & dimensions

Special orbits.

A point x is a �xed point, stationary point, or equilibrium point if

f (x) = x.

A point x is periodic of period p if the �nite sequence

fx, f (x), f 2(x), ..., f p�1(x)g

repeats in its orbit. This means that f p(x) = x.
The continuous-time counterpart of a periodic cycle is called a limit
cycle.
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2. Attractors & dimensions

Fixed points and periodic cycles are examples of invariant sets.

A set A � Ω is called invariant if f (A) � A, i.e., no orbit starting in A
can leave.

De�nition. A bounded and closed set A � Ω is an attractor if

1 it is absorbing (i.e., absorbs all orbits starting in a neighborhood of A)
2 it is invariant

The greatest neighborhood absorbed by an attractor is called its basin of
attraction.

Attractors are important because they contain the long-term dynamical
behavior of the system.
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2. Attractors & dimensions

Attractors of the logistic family, fr(x) = rx(1� x), 0 � x � 1,
0 � r � 4.

J.M. Amigó (CIO) Nonlinear time series analysis 13 / 43



2. Attractors & dimensions

Henon attractor. Henon map:

H(x, y) = (1� 1.4x2 + 0.3y, x).
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2. Attractors & dimensions

Lorenz attractor. Lorenz system:

(dx/dt, dy/dt, dz/dt) = (�10(x� y), 28x� y� xz,� 8
3 z+ xy)
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2. Attractors & dimensions

Main characterizations of an attractor:

Dimensions (or active degrees of freedom)

Box-counting dimension
Information dimension
Generalized dimensions (correlation dimension, etc.)

Lyapunov exponents
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2. Attractors & dimensions

The box counting dimension is a poor man�s version of the conventional
geometric dimension (Hausdor¤ dimension).

Method. Put a grid of size s on the structure and count the number N(s)
of grid boxes which contain points of the structure. Its box-counting
dimension is

D0 = lim
s!0

N(s)
log(1/s)

.

If you plot N(s) vs log(1/s), then D0 is the slope of the resulting
straight line.

In practice, the orbits have a �nite length n.

N(s, n) � N(s)� const � s�αn�β.
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2. Attractors & dimensions

Example. For coast of the UK, D0 = 1.31.
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2. Attractors & dimensions

The information dimension takes into account the number of points inside
the grid boxes.

De�nition. Let B1, ..., BN(s) the boxes of a grid of size s containing points
of an attractor A, and µ(Bj) the relative count of points in Bj. The
information needed to locate a point in the attractor with precision s is

I(s) = �
N(s)

∑
j=1

µ(Bj) log µ(Bj).

The information dimension of A, D1, is

D1 = lim
s!0

I(s)
log(1/s)
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2. Attractors & dimensions

D0 and D1 are just the two �rst instances of a whole hierarchy of
dimensions. Set

Iq(s) =
1

1� q
log

N(s)

∑
j=1

µ(Bj)
q,

where q � 0. The Renyi dimension of the attractor is

Dq = lim
s!0

Iq(s)
log(1/s)

.

D2 is called the correlation dimension.
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2. Attractors & dimensions

Property. D0 � D1 � ... � Dq � Dq+1 � ...

Example. For the Henon attractor:

D0 = 1.28� 0.01; D1 = 1.23� 0.02; D2 = 1.21� 0.01.

Attractors with fractional dimensions are called strange attractors. They
are typical of chaotic dissipative maps and �ows.
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2. Attractors & dimensions

Fractional dimensions are typical of self-similar objects (fractal geometry).

Example. The Koch snow�ake (fractal dimension = log 4/ log 3 ' 1.26)
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3. Lyapunov exponents

De�nition. The map f has sensitive dependence on initial conditions if for
any x0 2 Ω there is other y0 2 Ω arbitrarily closed such their orbits
diverge from each other at some time (they can join later).

This property is quanti�ed by the maximal Lyapunov exponent λ:

dist (x0, y0) = δ0 � 1
dist (xn, yn) = δn

�
) δn ' δ0eλn

Thus λ > 0 amounts to an exponential divergence of nearby orbits.

Remarks.

In general, λ = λ(x0)

There are so many Lyapunov exponents as directions in Ω (dim Ω).
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3. Lyapunov exponents

Calculation of λ.

If Ω is a 1D interval and f is di¤erentiable,

λ(x0) = lim
n!∞

1
n

n�1

∑
k=0

ln
��f 0(xk)

�� ,

where xk = f k(x0).

In general, one has to use numerical algorithms (quite tricky!).
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3. Lyapunov exponents

De�nition. An attractor A is called chaotic if f has sensitive dependence
on initial conditions taken on A.

Relation between λ and the attractor dynamics.

stable �xed point λ < 0
stable limit cycle λ = 0
chaos 0 < λ < ∞
noise λ = ∞
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4. Invariant measures

A measure generalizes the concept of length, area, and volume.

Lebesgue measure. Let B � Rd:

Lebesgue measure of B �
Z

B
dx [Shorthand: µ(dx) = dx]

= length (d = 1), area (d = 2), volume (d = 3) of B.
Stieltjes measure. Let ρ be a density (i.e. ρ(x) � 0,

R
Ω ρ(x) = 1):

Stieltjes measure of B �
Z

B
ρ(x)dx [Shorthand: µ(dx) = ρ(x)dx]

Used to calculate the mass, charge, etc. of continuous distributions.
Dirac measure. Let ω 2 Ω (the �support�):

δω(B) =
�

1 if ω 2 B,
0 if ω /2 B.

)
Z

Ω
f (x)dδω(x) = f (ω).

Used to calculate the mass, charge, etc. of discrete distributions.
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4. Invariant measures

In dynamical systems a measure µ must have two properties:

1 Normalization, i.e., µ(Ω) = 1 (hence, it is formally a probability).
2 Invariance, i.e.,

µ(f�1(B)) = µ(B),

where B � Ω and f�1(B) is the set of all predecessors of points in B.

A dynamical system (Ω, f ) endowed with a normalized and invariant
measure µ is called a measure-preserving system, and denoted by

(Ω, f , µ).

Measure-preserving systems are the deterministic counterpart of stationary
random systems.
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4. Invariant measures

There are plenty of invariant measures.

If x0 is a �xed point,
µ = δx0

If x0, x1, ..., xN is a periodic cycle,

µ =
1

N+ 1

N

∑
k=0

δxk

But they are physically unobservable in general, and the dynamic is
uninteresting anyway.
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4. Invariant measures

When de�ning D1, we considered the quantities

µ(B) = lim
n!∞

#fx0, x1..., xn�1 2 Bg
n

, (1)

where x1 = f (x0), x2 = f 2(x0), etc.

Fact. On chaotic attractors, (1) de�nes a normalized and invariant
measure.

This measure is called the natural, physical, or empirical measure.

The natural measure is the invariant measure used in applications.
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4. Invariant measures

Example. The natural measure of the logistic map is

µ(B) =
Z

B

dx
π
p

x(1� x)
, i.e., ρ(x) =

1
π
p

x(1� x)

0 1

10

x

ρ(
x)

ρ(x) can be visualized as the histogram of a generic orbit.
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4. Invariant measures

If an invariant measure cannot be decomposed into further invariant
pieces, it is called ergodic.

Ergodic Theorem (Birkho¤). If the invariant measure µ is ergodic, then
for every continuous map ϕ : Ω ! R,

Z
Ω

ϕ(x)dµ(x)| {z }
space average of ϕ

= lim
n!∞

1
n

n�1

∑
k=0

ϕ(f k(x0))| {z }
time average of ϕ

for almost all x0 (i.e., the exceptions build a set of µ-measure 0).

Properties that hold except for a set of points with µ-measure 0, all called
generic.
E.g., the value of λ is generic for chaotic attractors.
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5. Chaotic attractors

Dynamical systems with chaotic attractors.

(1D-1) The logistic (or quadratic) family : xn+1 = fr(xn), where

fr(x) = rx(1� x), 0 � x � 1, 0 � r � 4.

f4(x) = 4x(1� x) is the logistic map.
The attractor of f4 is A = [0, 1].
Lyapunov exponent of f4(x):

λ =
Z 1

0

��f 0(x)�� dµ(x) =
Z 1

0

log j4(1� 2x)j
π
p

x(1� x)
dx = log 2.
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5. Chaotic attractors

fr can be chaotic only if r � r∞ := 3.5699456718..., the Feigenbaum
point.

For r∞ < r � 4 there are in�nite �periodic windows�.
Lyapunov exponents of the logistic family (thick line).
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5. Chaotic attractors

(1D-2) The tent map (1-dimensional �baker�s map�)

λ = log 2, µ = Lebesgue measure
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5. Chaotic attractors

(1D-3) The binary shift map:

0 1 /2 1

1

x
2x

 m
od

 1

λ = log 2, µ = Lebesgue measure

Remark. The logistic, tent, and binary shift maps are �isomorphic�(i.e.,
equivalent) in the sense of dynamical systems1. Thus:

Orbits and invariant measures go into each other by a change of
coordinates.

They have the same Lyapunov exponents.
1J.M.A, Permutation Complexity in Dynamical Systems, Springer Verlag, 2010.
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5. Chaotic attractors

(D2-1) Henon map:

(xn+1, yn+1) = (1� 1.4x2
n + 0.3yn, xn)

λ = 0.419222� 0.000003.

The Henon map is dissipative, with an area contraction factor of 0.3.

(D2-2) Baker�s map: For 0 � xnyn � 1,

(xn+1, yn+1) =

�
(2xn, yn) if 0 � xn <

1
2

(2xn � 1, 1
2 (yn + 1)) if 1

2 � xn � 1

λ = log 2, µ = Lebesgue measure
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5. Chaotic attractors

(D2-2) Cat map: xn+1 = 2xn + yn (mod1), yn+1 = xn + yn, (mod1).

λ = ln 3+
p

5
2 = 0.96242365...

The cat map is conservative.
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5. Chaotic attractors

Question: Is the cat map really chaotic?
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5. Chaotic attractors

(3D-1) Lorenz �ow. It is highly dissipative.
(3D-2) Rössler �ow. dx/dt = �y� x, dy/dt = x+ ay,
dz/dt = b+ z(x� c).
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6. Some nonlinear phenomena

Some nonlinear phenomena:

1 Coexistence of attractors (multistability).

Description: f has several attractors.
Problem for TSA: Repetition of the experiment with the same
parameters may yield a qualitatively di¤erent result.

2 Intermittency.

Description: Orbits alternate between periodic (regular, laminar) and
chaotic (irregular, turbulent) behavior.
Problem for TSA: Di¤erent time scales.

3 Bifurcations (or phase transitions).

Description: Abrupt change of the attractor geometry at a critical
value of a control parameter.
Problem for TSA: Change of stability.
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6. Some nonlinear phenomena

A few typical bifurcations.

Pitchfork bifurcation. A stable �xed point becomes unstable and two
new stable �xed points are created.

Tangent (or saddle-node) bifurcation. It consists in the creation of
two periodic orbits, one stable and one unstable. Tangent bifurcation
is the mechanism for one type of intermittency (type I).

Supercritical Hopf bifurcation. At the parameter value where a stable
�xed point becomes unstable, a stable limit cycle is born.
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6. Some nonlinear phenomena.

Example: Feigenbaum bifurcations.
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